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a  b  s  t  r  a  c  t

Pore-scale  modeling  has  become  a  quite  popular  tool for evaluating  the  impact  of  material  structure
on  fuel  cell  performance.  However,  the  computational  complexity  of  these  models  often  limits  simu-
lations  to  analyze  only  a small  volume  of  material,  which  is  typically  selected  randomly  from  a  much
larger  microstructure  dataset.  When  considering  the heterogeneous  internal  structure  of  fuel  cell  mate-
rials, it  is  highly  unlikely  that  such  a randomly  selected  volume  (i.e.,  model  domain)  would  adequately
reflect  the  salient  features  of  the  material  structure.  The  objective  of  this  work  is  to  utilize  the recent
advances  in  microstructure  quantification  to select  small  representative  volume  elements  (RVEs)  that
accurately  reflect  the  overall  microstructure  and  transport  properties  of  fuel  cell  materials.  The  micro-
porous  layer  (MPL)  in  polymer  electrolyte  fuel  cells  is  chosen  for initial  demonstration  of  the  approach.
Dual-beam  focused  ion  beam  scanning  electron  microscopy  is  utilized  to obtain  a  3-D  structural  dataset
epresentative volume element
ransport
ater management

of  the  selected  MPL  sample.  The  RVEs  are  selected  using  the  new  approach  of  weighted  sets  of  opti-
mally  selected  statistical  volume  elements,  and  the  key  structure  and  transport  metrics  are  evaluated
using  advanced  microstructure  algorithms  developed  in-house.  Metric  comparisons  between  the RVEs
and  the  full  dataset  indicate  that  the  RVEs  selected  by  this  approach  offer a very  good  representation
of  the  full  dataset,  albeit  in a volume  that  is  significantly  smaller  in  spatial  extent,  therefore  providing  a
computationally  efficient  and  reliable  model  domain  for  pore-scale  analyses.
. Introduction

With the potential for high power density and efficiency, fuel
ells hold great promise for powering many applications. Current
esearch efforts for fuel cells are focused on improving their dura-
ility and performance, both of which are inherently influenced
y the materials used in these systems [1].  The properties and
ransport behavior of these materials are strongly linked to their
nique and complex internal structure (henceforth referred to as
microstructure”). As a result, significant effort has been devoted
o characterize the microstructure of these materials. Due to the

inute length scales and heterogeneous nature of many fuel cell
aterials, experimental investigations can be expensive and quite

ifficult to conduct, if not impossible. Consequently, modeling
tudies have become an indispensable tool for investigating the

ffects of these materials on the overall system performance and
urability.
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Although existing modeling efforts have greatly advanced the
level of our understanding regarding fuel cell operation, certain
phenomena are yet to be fully explained. For instance, water
management is a critical issue which continues to plague poly-
mer  electrolyte fuel cell (PEFC) development [1–10]. Numerous
modeling studies have been performed to investigate the water
transport and distribution in PEFC materials (e.g., diffusion media,
catalyst layer, etc.) [2,5,6,8,9,11–41]. Although these efforts pro-
vide valuable insights, major discrepancies still exist between the
experimental and modeling studies. These inconsistencies likely
originate from the fact that the microstructure features of the fuel
cell materials are not accurately accounted for in the current mod-
eling efforts. For instance, macroscopic models are often fast and
quite useful; however, most of them rely heavily on bulk correla-
tions adopted from other fields, which do not adequately account
for the specific microscale topology in most fuel cell materials
[3,41].

Alternatively, pore-scale modeling can rectify the deficiencies

of macroscopic modeling, as it can be applied directly to more
realistic representations of the internal structure of PEFC mate-
rials. However, each pore-scale modeling technique has its own
limitations. For instance, pore network modeling (PNM) is fairly

dx.doi.org/10.1016/j.jpowsour.2011.09.035
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
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omputationally efficient [11–18],  but utilizes highly idealized geo-
etrical descriptions of the material’s pore space. For example, the

iffusion media (DM) in PEFCs is often represented as an arrange-
ent of pores, throats and solid on a cubic lattice [11–14].  While

uch idealization dramatically reduces the computational time, the
pplicability of using such simplified geometries in predicting the
ransport through the DM internal structure is highly question-
ble. Recently, a few studies have attempted to better represent
he material by randomizing the location of the structural features
n the pore network [15–18].  Hinebaugh et al. [18] went a step
urther by accounting for through-plane heterogeneity in porosity
ased on X-ray computed tomography (XCT) data. Despite progress,
ore work is still needed to improve the resolution of these models

o accurately capture the true material structure and related effects
n the cell performance.

Recently, other pore-scale approaches have emerged that can be
pplied to more realistic material structures, such as those obtained
sing 3-D imaging techniques like XCT or focused ion beam scan-
ing electron microscopy (FIB-SEM). A promising approach is the

attice-Boltzmann (LB) method [19–21].  In the last five years, the
B method has been successfully utilized to investigate transport
henomena in fuel cells, especially in the DM of PEFCs [22–32].
lthough these studies offer significant insight into the multiphase

ransport in DM,  many of these models were actually built on vir-
ual stochastic microstructures based on 2-D SEM micrographs and
ther data [22–28].  More recently, a few LB-based modeling efforts
ave been reported which utilize 3-D microstructure data of fuel
ell DM obtained from XCT and FIB-SEM [29–32].  However, since
he LB method is fairly computationally intensive, these models
ere limited to analyze very small sub-volumes (∼50–150 pixels3

elected either randomly or by some generic averaging process) of
he full dataset (over ∼ 500 pixels3), which may  or may  not accu-
ately reflect the overall microstructure of the DM.  Considering the
omplex structure of fuel cell DM,  it is very likely that selection
f “random” small volumes will not accurately reflect the over-
ll microstructure of the DM and result in inaccurate conclusions
egarding the structure–transport–performance relationship. Sim-
lar issues also exist for other pore-scale approaches. For instance,
he volume of fluid (VOF) method has been recently employed to
imulate multiphase transport in PEFCs [33–40].  Due to the com-
utational complexity, the VOF method is also limited to modeling
he transport through small volume sizes.

Pore-scale modeling techniques such as the LB and VOF methods
how tremendous promise for overcoming the major limitations of
acroscopic and pore network modeling. However, the high com-

utational costs associated with these methods restrict them to
nalyses of relatively small volumes which are selected from the full
aterial dataset either randomly or by some generic averaging pro-

ess. Here, we show that choosing such small volumes “randomly”
rom the full dataset is unlikely to yield results which are repre-
entative of the full dataset. Therefore, a more rigorous approach
s needed to select a proper representative volume element (RVE)
rom the full dataset that accurately represents the prominent fea-
ures of the material for reliable model simulations.

The concept of an RVE is commonly invoked in studying impor-
ant microstructure–property relationships in materials science. An
VE is defined as a finite region in the material structure that is “sta-
istically representative” of the entire sample’s microstructure and
epresents the macroscale properties of the sample with a desired
ccuracy [42–44].  In practice, the size of a single RVE represent-
ng the entire microstructure is typically too large to allow detailed

icroscale simulations with sophisticated physics-based models.

lternatively, it is possible to capture the important details of the
icrostructure in a set of small randomly selected statistical vol-

me elements (SVEs) [45–47].  However, this approach requires a
airly large number of SVEs to accurately capture the important
Sources 197 (2012) 168– 179 169

details of the microstructure. Recognizing these challenges, Niez-
goda et al. [42] have recently proposed the novel concept of a
weighted set of optimally selected SVEs, referred to as a “WSVE
Set”, to determine the proper RVEs that accurately reflect the over-
all microstructure features of the material of interest. The resulting
RVEs are significantly smaller in spatial extent than the full dataset,
and therefore are more computationally efficient. The WSVE Set
approach was  applied to different composite materials, and val-
idated in terms of efficiently capturing selected microstructure
metrics and mechanical properties of the various composite mate-
rials [42].

The objective of this study is to explore the ability of the WSVE
Set approach to accurately capture the important structural fea-
tures and related transport properties of fuel cell materials in small
representative volumes. For demonstration purposes, the WSVE Set
approach is applied to the micro-porous layer (MPL) in PEFCs to
select small RVEs which accurately reflect the prominent features
of a much larger MPL  microstructure dataset. Results indicate that
the RVEs selected by this approach offer a very good representation
of the full dataset in a volume that is significantly smaller in spatial
extent than the full dataset, therefore providing a computationally
efficient and reliable model domain for pore-scale modeling efforts.

2. Method of approach

The method to choose the proper RVE Sets for the tested MPL
sample consists of four main steps: (a) microstructure dataset
acquisition, (b) data pre-processing and segmentation, (c) full
dataset construction and RVE selection, and (d) detailed structure
and property analysis of the full dataset and selected RVEs (i.e., RVE
validation). Each step is described in detail below, and a flow chart
outlining the main steps of the present study is shown in Fig. 1.

2.1. Dataset acquisition

As a first step to study the MPL  microstructure, an FEI StrataTM

DB 235 FIB-SEM was  utilized to perform nanotomography on the
MPL  of a SIGRACET® SGL 10 BC gas diffusion layer. The FIB-SEM
technique incorporates both a focused ion beam and an elec-
tron beam in a single system, and can be used to provide high
quality volumetric and cross-sectional images of the tested sam-
ples [31,48,49].  The high precision beam control/ion-milling ability
enables serial cross-sectional surface slicing, which is used for 3-D
visual reconstruction of the tested specimen. In this study, prior
to any milling with the Ga+ ion beam, a 1.5 �m platinum layer
was  deposited over the target volume of interest to prevent ion
damage. The volume of interest was then exposed as a peninsula
by milling away the surrounding volume (Fig. 2a and b). Sec-
tioning the end face of this peninsula (rather than one face of a
rectangular pit milled into the MPL  surface, as is commonly per-
formed [31,48]) allows for minimizing the horizontal gradients and
prevents image darkening with successive cross sections, both of
which complicate image processing and segmentation. Serial cross-
sectional micrographs of the MPL  were obtained by successively
milling 20 nm slices at 500 pA/30 kV, followed by capturing an SEM
image of the milled surface (Fig. 2c). To maximize image clarity
and achieve a pixel resolution of ∼10 nm, the SEM was  operated
in ultrahigh-resolution mode using a through-the-lens detector.
Tomographic data was  obtained in this manner from four different
locations on the MPL  sample to capture any spatial heterogene-

ity within the material structure. At each location, a total of 150
slices were milled and imaged, which resulted in a captured vol-
ume  of ∼5 �m × 8 �m × 2 �m from each of the four data sampling
locations.
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Fig. 1. Flow chart outlining th

.2. Image pre-processing

The next step is to pre-process all the images to ensure accu-
ate quantification of the internal structure of the tested MPL. The
aw FIB-SEM image sets are inherently problematic, due to the off-
ormal angle of the SEM source and the small pore sizes in the
PL  which approach the limits of FIB-SEM resolution. To address

hese issues, we have developed a specific image pre-processing
rotocol using the MATLAB Image Processing Toolbox [50] and the
ATLAB Central online code repository. The data pre-processing

rotocol has four main steps: (i) image alignment, (ii) viewing angle
orrection, (iii) creation of cubic voxels, and (iv) gradient removal.

A relatively high SEM magnification is necessary to capture the
anoscale features of the MPL  structure. Consequently, any small
hange in the SEM viewing area due to beam shift and/or sam-
le drift can translate to significant in-plane image displacements
etween successive image slices. To correct for any misalignment
ithin the image stack, a discrete Fourier transform registration

ode [51,52] is applied at the sub-pixel level, by using regions of
he image outside the cross-sectional face as fiduciary markers.
nother challenge which arises in image processing is for the cor-
ection of the off-normal viewing angle (� = 52◦) between the SEM
ource and the cross-sectional surface being imaged (Fig. 2d and e).
ecause the electron beam is not incident perpendicular to this sur-

ace, the top edge of the sectioned region appears to creep upward
n successive images. This can be corrected by shifting each image
ownward by a number of sub-pixels, s:

 = t

p
cos � (1)

hich depends on the slice thickness t (nm), the pixel size p
nm pixel−1), and the viewing angle � [49]. Following downshift,
he image must also be stretched vertically by a factor f to account
or the angular projection [49]:

 = 1
sin �

(2)

Once all images have been properly aligned and stretched,
he entire stack of images is cropped so that only the desired
nternal structural information remains. Fig. 3 outlines the image
re-processing steps described up to this point.

It is often convenient to convert the datasets into volumes com-
osed of cubic voxels for further evaluation of structure metrics
i.e., properties) to determine the overall transport characteristics
f the tested sample. Since the slice thickness is generally larger
han the pixel dimensions in the images, stretching and interpo-
ating the image stack in the through-plane direction is required
o achieve sufficient image clarity. Despite the advantage of seri-

lly cross-sectioning a peninsula, the raw images inevitably contain
light shadow gradients (Fig. 4a). These gradients tend to lower
he accuracy of image segmentation. We  have removed the gra-
ients in the raw images by performing a bi-parabolic fit to each
in steps of the present study.

grayscale image and then dividing the image data by the fitted bi-
parabolic surface (Fig. 4a). The bi-parabolic fit was computed using
the surface fitting code by Pastushenko [53].

2.3. Segmentation

Following image pre-processing, the next important task is
to develop and implement an appropriate segmentation proto-
col for the particular microstructure dataset to enable accurate
determination of whether each pixel is occupied by the solid or
the pore phase (only one is allowed in each pixel). The solid
phase in tested MPL  samples actually consists of several distinct
phases (e.g., hydrophilic carbon particles, hydrophobic polyte-
trafluoroethylene). These hydrophobic/hydrophilic phases cannot
be distinguished in the FIB-SEM datasets, therefore the segmenta-
tion process presented in this paper does not account for the local
wettability as a separate phase in the MPL  microstructure.

It is very challenging to determine the accuracy of a given seg-
mentation technique on the datasets due to the fact that the MPL
is formed as a thin layer deposited on the macro-DM surface. Con-
sequently, porosity in the MPL  is not readily measurable, and can
only be estimated through comparing the porosity measurements
of macro-DM substrate with the measured values for MPL-coated
DM by assuming an MPL  thickness range (∼50–100 �m) [54].
These estimates yield a porosity value for the MPL  in the range of
∼0.4–0.6, which agrees with mercury intrusion porosimetry data
for other MPL  samples reported in literature [55], but is still too
broad to be used for precise calibration of the segmentation tech-
niques employed. Beyond a rough expectation of adherence to this
range, the only other criteria for selection of a particular segmen-
tation technique is careful visual inspection of the segmentation
results.

Since the MPL  has a highly heterogeneous structure with small
pores, accurate separation of pore and material regions in the cap-
tured images presents a significant challenge, as irregularities in
shadowing can make it extremely difficult to distinguish between
the two. Large scale variations in mean brightness across the image
are mostly eliminated by the shadow gradient removal procedure
described above. However, even with this correction, it is still possi-
ble for a pixel which really represents a pore region to have the same
brightness as another pixel which should be counted as a material
region. The difficulty of distinguishing the pore and material phases
is illustrated by the histograms in Fig. 4b. Ideally, one would prefer
that the pore and material pixels in each image display a bi-modal
distribution, such that the pore pixels form a distinct cluster (peak)
around some dark grayscale value, while the material pixels form
a distinct bright cluster. In Fig. 4b, an example of an ideal distribu-
tion is shown in red (dashed); however, the true case is generally

more like the histogram shown in blue (solid), which lacks distinct
peaks and shows only a hint of a “shoulder” on the left side of its
single peak. (For interpretation of the references to color in the text,
the reader is referred to the web version of the article.) A sensible
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ig. 2. Serial-sectioning of the MPL  using FIB-SEM. (a) 52◦ view SEM image, (b) top
onfiguration (adapted from Iwai et al. [48]), and (e) SEM image projection effects A

ssumption might be that the location of this shoulder represents
 reasonable dividing line between pore and material pixels, but
pplying this assumption ‘manually’ (after equalizing brightness
istograms across all images in a set) gives an unexpectedly low
ean porosity (in the range of 0.22 ± 0.12) for the MPL  sample,

nd clearly misidentifies pore pixels as material pixels upon visual
nspection (Fig. 4c).
To overcome the limitation of manual thresholding, we
ave performed automatic threshold selection techniques such
s the iterative ISODATA method [56–58] and Otsu’s method
59]. The iterative ISODATA method uses the mean grayscale
FIB image, (c) example cross section slice, close up at 52◦ , (d) schematic of FIB-SEM
d from Inkson et al. [49].

value of the image as an initial guess at the threshold, com-
putes the mean brightness of the pixels to either side of
this threshold, and averages these two  values to compute its
next guess at the threshold. This process is repeated until
the threshold level changes by less than some specified toler-
ance. Otsu’s method seeks a grayscale threshold that minimizes
the intra-class brightness variance, defined as a weighted sum

of the brightness variances within each of the two classes
[59]. The weighting factor is equal to the fraction of the
image pixels which fall within each class. The minimiza-
tion is performed by exhaustively computing the intra-class
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Fig. 3. Flow chart outlining the initial imag

rightness variance across all possible threshold values and select-
ng the threshold which gives the best result.

For our particular microstructure dataset, the iterative ISO-
ATA method (Fig. 4c) and Otsu’s method yield porosity values
f 0.42 ± 0.02 and 0.43 ± 0.02, showing a good agreement with
ach other. The segmented images arising from these methods are
lmost indistinguishable. Since the difference between these two
ell-established techniques is substantially less than the variations
e might expect due to other sources of error (detection error,
aterial redeposition on the surface, etc.), the ISODATA threshold-

ng method [56–58] was chosen in this study for segmentation and
urther analysis of the captured images. Once segmentation was
omplete, the stack of binary images was combined in 3-D, form-
ng a volumetric reconstruction of the measured microstructure
Fig. 5).

.4. Representative volumes

Once the microstructure of the tested MPL  sample was  cap-
ured and properly segmented to obtain a 3-D dataset, the full
ataset was analyzed to select an RVE. In this study, we  employed
he novel WSVE Set approach [42] which captures the details of
he microstructure in a set of small volumes that are optimally
elected from the larger, full dataset. In this approach, the statistical
olume elements (SVEs) in the set are chosen using optimization
lgorithms, and they are individually weighted to best capture
he selected microstructure metrics (in this case 2-point statistics,
xplained below) of the full dataset. Therefore, the resulting set

f weighted SVEs serves as an equivalent of an RVE (Fig. 6). The
acroscale effective value for any property (“metric”) of the given
aterial is calculated by taking the weighted average of the corre-

ponding values for the members of the WSVE Set. The number of
-processing steps for the FIB-SEM dataset.

volume elements in the WSVE Set is selected such that the mea-
sured ensemble-averaged 2-point statistics of the full dataset are
matched within acceptable tolerance [42,44].

In this work, we followed the same approach where the WSVE
Sets for the MPL  sample were extracted such that they reflect
the ensemble-averaged 2-point statistics of the full MPL  dataset
with high accuracy. A 2-point statistic (or 2-point correlation) cap-
tures the spatial correlation between two  different local states (e.g.,
phases) present in the structure [43,60]. More specifically, a 2-
point correlation shows the probability for which the head and tail
(i.e., “two points”) of a vector (of specific orientation, placed within
the 3-D dataset) lie in particular phases (e.g., pore, solid material).
When the same local state is selected for both ends of the vec-
tor (i.e., head and tail), the 2-point correlation is referred to as an
auto-correlation. However, if different local states are selected for
the ends of the vector, the 2-point correlation is called a cross-
correlation. When considering a pore–pore auto-correlation for
example, both the head and the tail of the vector must lie in the
pore phase of the material.

The 2-point statistics are used here to capture the impor-
tant statistical measures of the structure, since they contain
significant information regarding the shape, size, and spacing of
features (i.e., phases) within the microstructure [61,62].  As an
example, a 3-D two-phase microstructure volume composed of
100 × 100 × 100 voxels requires 1003 2-point statistics (dimen-
sions) to represent it. The specific importance of any one of these
statistics varies based on the structural features of the material
under investigation. For this particular problem, to speed up the

WSVE Set selection process, this large amount of data is adequately
represented in a much lower dimensional space using principal
component analysis (PCA). The PCA method decomposes the data
into an orthonormal basis, ranked by order of importance [42]. In
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Fig. 4. (a) Pre-processing stages of raw FIB-SEM images of the tested MPL  sample,
showing the raw image, gradient fit, gradient-free image, and thresholded image
with pore space shown in black. (b) Ideal vs. actual image histogram, showing the
challenge of distinguishing the pore and material peaks (phases). (c) Image segmen-
t
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shows the resulting steady-state concentration field within the
ation by thresholding via manual inspection and the iterative ISODATA method
56–58].

he high dimensional space, the direction with the greatest scat-
er is chosen as the principal direction. Then, all directions normal
o the principal direction are examined to find the one(s) with the

ost scatter. Often, only a few basis vectors are necessary to pro-
ide an adequate representation. For this particular problem, the

pecific weight of each SVE member is optimally assigned during
he PCA procedure so that the 2-point statistics are best matched
y the WSVE Set.
Sources 197 (2012) 168– 179 173

Since the properties of a material are complicated functions of
its underlying structure, it is expected that an RVE that captures
the structure well (e.g., through the 2-point statistics) will also
accurately represent the effective material properties [42]. For the
measured MPL  datasets, since only two  phases (solid and pore) are
considered, there is only one independent 2-point correlation. For
convenience, this independent 2-point correlation was  selected as
the pore–pore auto-correlation in this study.

2.5. Evaluation of key structural properties (metrics) for WSVE
Set validation

Once a WSVE Set is selected from the full microstructure dataset,
the next step is to validate the WSVE Set through a detailed com-
parison of key structure metrics calculated for the WSVE Set and
the full material dataset. Several key microstructure metrics have
been identified for this purpose, which include the porosity, inter-
nal surface area, connected internal surface area, tortuosity, and
structural diffusivity coefficient. Although these metrics are used
primarily to validate the WSVE Sets produced in this work, many
of them are also of high importance for PEFC modeling studies. All
of these key metrics were calculated via special algorithms devel-
oped in-house. More detailed information may  be found in our
publication [63].

The key structure related metrics of porosity and internal
surface area were estimated using fundamental image analysis
techniques. Porosity was calculated by taking the ratio of the num-
ber of pore voxels to the total number of voxels in the tested 3-D
volume. Internal surface area was estimated by detecting phase
boundaries in the three primary orthogonal directions. The result-
ing count of boundary voxels was  multiplied by the surface area
of a voxel face and then divided by the size of the tested vol-
ume  to estimate the internal surface area per unit volume. The
connected surface area per unit volume was calculated in a sim-
ilar fashion; however, any pore voxels that were isolated from the
through-plane connected pore network were neglected.

In particular, we have taken a unique approach for the estima-
tion of two important transport related metrics: (i) tortuosity and
(ii) the structural diffusivity coefficient. Tortuosity was estimated
by using Dijkstra’s search algorithm [64] in 3-D, to identify the
shortest path between a designated voxel on one face of the sample
volume and the opposing face (Fig. 7a) [63]. Rather than utilizing
an effective diffusion coefficient-tortuosity correlation based on
diffusion simulations as in [31,48],  our procedure calculates the tor-
tuosity by comparing the identified shortest path lengths for every
single pore voxel on one face to the shortest distance between the
opposing surfaces. The tortuosity analysis was performed specifi-
cally in the primary flow direction of interest (e.g., through-plane
direction) by examining the shortest path from every pore voxel
on the start surface to the destination surface of the tested mate-
rial volume. This analysis results in a tortuosity distribution, which
provides a great deal of detail regarding the tortuous nature of the
transport paths in the material of interest. As such, an effective tor-
tuosity value for the tested material structure can be determined
by the detailed analysis of the tortuosity distribution.

A 3-D diffusion model has been developed in-house to evalu-
ate the structural diffusivity coefficient, based on a finite volume
approximation of the steady-state Fickian diffusion model [63].
Appropriate boundary conditions were used to impose zero flux
on the lateral surfaces, and uniform but different concentrations
on the top and bottom surfaces (i.e., the start and end surfaces used
in the through-plane tortuosity estimation), respectively. Fig. 7b
porous structure of the MPL  reconstruction. Estimates for the effec-
tive diffusivity and the structural diffusivity coefficient can be easily
obtained from the resulting value of the net flux [63]. The structural
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ig. 5. Three-dimensional reconstruction of the measured MPL  microstructure. On
00  pixel3 volume is shown on the right to better visualize the MPL pore structure.

iffusivity coefficient is selected here as an example of a basic bulk
ransport property that is expected to be significantly influenced by
he details of the microstructure. More detailed information regard-
ng the determination of the structural diffusivity coefficient can be
ound in [63].

. Results and discussion

.1. Data selection and spatial variance of microstructure in MPL

In order to examine if there are significant spatial variations in
he microstructure (from one location to another in the MPL), a total
f four large datasets (referred to as full datasets) were extracted via

IB-SEM as described earlier. A detailed screening procedure was
hen performed to investigate the degree of structural variation
etween the four datasets by comparing their 2-point statistics.
he dataset comparison was conducted as follows:

ig. 6. Schematic of WSVE Set selection from full dataset. A WSVE Set can have different
erves  as an equivalent of an RVE of the full dataset. An effective value for a given proper
n) of the corresponding members of the WSVE Set.
 dataset is shown on the left (500 × 800 × 204 pixels, or ∼5 �m × 8 �m × 2 �m).  A

300 random volumes of window size 100 × 100 × 100 pixels
(100 pixels3) were selected from each of the four full binary
datasets. The window size of 100 pixels3 was chosen to ensure
that it can capture a sufficient number of structural features in
the MPL  upon visual inspection. The 300 random volumes were
selected because 300 volumes of 100 pixels3 are enough to fill each
full dataset (500 × 800 × 204 pixels) over three times, providing
sufficient window overlap for computing statistical averages. The
2-point statistics were calculated (via pore–pore auto-correlations
on each 3-D binary volume) for each of the 300 volumes and aver-
aged to obtain an “ensemble average” of 2-point statistics for the
MPL. The scalar error in 2-point statistics was  then calculated with
respect to the ensemble average for each of the individual 300
volumes.
This comparison process was  repeated for the other datasets
that have window sizes of 50 pixels3 and 75 pixels3. The computed
scalar statistical error is plotted for each of the four datasets in
Fig. 8. As shown for each window size, the average scalar statistical

 members depending on the structural features of the materials of interest, and it
ty (“metric”) is calculated by taking the weighted average (using the SVE weights,
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ig. 7. Examples of metric (property) analysis of the measured MPL  microstructur
he  bottom face and the top face [63], and (b) structural diffusion coefficient: the re
ound  in our study [63].
rrors are very close to each other and substantial overlap exists
etween the error ranges for each dataset, indicating that there

s no significant variation in the measured structure between the

ig. 8. Plot of the average and range of scalar error in 2-point statistics (with respect
o  the MPL ensemble average) for the random volumes chosen from each of the four
atasets. For each dataset-window size combination, 300 random volumes were
onsidered.
tortuosity distribution: shortest path calculations between random pore voxels on
g concentration gradient for simulation of diffusion [63]. More information can be

four datasets. Therefore, the WSVE Set selection and metric analysis
procedures were performed on only one full dataset, which allowed
us to save significant computational time without sacrificing from
the accuracy.

3.2. Selection of WSVE Sets

Prior to selecting a WSVE Set, an appropriate SVE window
size and number of SVE members in the WSVE Set should be
determined to achieve a proper model domain size for accurate
metrics analysis with minimum computational cost. The appropri-
ate SVE window size was determined by performing a procedure
similar to the one described in Section 3.1,  except it was executed
for only one dataset for six different window size cases (50, 75,
100, 125, 150, 175 pixels3). In each case, the “ensemble average” or
target (i.e., the average of 2-point statistics) is calculated from the
300 random volumes in the full dataset for the respective window
size. The average and range of scalar statistical error are plotted in
Fig. 9a for all six window sizes. As shown in Fig. 9a, a very little drop

in error is observed beyond a window size of 100 pixels3. Thus, a
window size of 100 pixels3 was  deemed appropriate for WSVE Set
selection to accurately reflect the structural features of the full MPL
dataset.



176 E.A. Wargo et al. / Journal of Power 

Fig. 9. (a) Plot of scalar statistical error versus window size, for selection of an
appropriate SVE window size. Based on the analysis, 100 pixels3 was determined
as  the appropriate window size. (b) Plot of scalar statistical error versus number
of  WSVE members in the WSVE Set, using the selected window size of 100 pixels3.
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the WSVE Set increases (see Table 1). The results for surface areas

F
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he 5-member WSVE Set size was  observed to be sufficient to capture the structural
eatures of the full MPL  dataset.

Once an appropriate SVE window size is identified, the next
tep is to determine the number of members in a WSVE Set that
s necessary to sufficiently capture the structural features of the
ull dataset. The appropriate number of members in the WSVE
et was determined by finding the WSVE Sets (composed of
ifferent numbers of WSVE members, optimally selected from the
00 random volumes) which most accurately reflect the 2-point
tatistics of the full dataset. For that purpose, WSVE Sets composed

f only one member up through ten members (each member has

 size of 100 pixels3) were constructed and evaluated. For each of
hese ten WSVE Sets, the scalar statistical error in 2-point statistics

ig. 10. Exact locations of the members (each member is ∼1 �m × 1 �m × 1 �m)  of the WS
SVE  Sets.
Sources 197 (2012) 168– 179

between the WSVE Set and ensemble average was  determined
for comparison. As shown in Fig. 9b, the drop in error beyond a
5-member WSVE Set is observed to be relatively small. This indi-
cates that a WSVE Set having five members seems to be sufficient
to accurately capture the structural features of the tested MPL
sample. Fig. 10 shows the exact location of each WSVE member
within the full MPL  dataset for the 1-, 3-, and 5-member WSVE
Sets.

3.3. WSVE Sets: metrics and validation

Once a WSVE Set was  identified for the material dataset, the
metric analysis protocol was  applied to determine the key struc-
ture and transport metrics for the WSVE Set. For the MPL, this
included evaluation of the porosity (ε), internal surface area (ISA),
connected internal surface area (CISA), through-plane tortuosity
(�), and the structural diffusivity coefficient (K). For volumes of
100 pixels3, the codes for determining � and K each take about 1 h
to run on a dual core 2.6 GHz processor with 8 Gb of physical mem-
ory. This further justifies our motivation of capturing the structural
characteristics of a large microstructure dataset in a small volume
(i.e., window size), since the run time scales rapidly with window
size.

In order to further optimize the computational time, the metrics
for the full dataset were determined by averaging over the 300
random volumes to obtain an “ensemble average”. When compared
with literature, the computed ensemble average porosity (0.41) and
through-plane tortuosity (1.34) results agree very well with the
values reported in Ostadi et al. [31], which further validates the
microstructure analysis tools introduced in our earlier study [63].
With regards to metric analysis for the WSVE Sets, the metrics of the
1-member, 3-member and 5-member WSVE Sets were determined
by scaling the individual metric calculation for each member with
the corresponding weighting factor and adding them together to
achieve the weighted average. The computed metric values for the
full dataset and the 1-, 3-, and 5-member WSVE Sets are shown
in Table 1, with % errors included. When the surface area results
are compared, a 1-member WSVE Set seems insufficient in terms
of accurately capturing the surface area of the full dataset, showing
an error around 15% as compared to the full dataset. However, all
other metrics are within 5% error for all three WSVE Set sizes.

As with the scalar error in 2-point statistics, the errors in metric
calculations are also expected to drop as the number of members in
(ISA and CISA) follow this trend closely (Fig. 11a), since surface area
is closely related to 2-point statistics [65]. Additionally, a loss in sur-
face area of only 1.5 �m2 �m−3 (6.2%) is found when the ISA and

VE Sets within the full dataset (∼5 �m × 8 �m × 2 �m)  for the 1-, 3-, and 5-member
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Table  1
Structural properties of MPL  obtained from selected WSVE Sets (with different numbers of members) vs. the ensemble average of the full dataset.

Porosity Surface Area (�m2 �m−3) Connected Surface Area (�m2 �m−3) Tortuosity Structural Diffusivity Coefficient

Ensemble average 0.4115 23.77 22.30 1.34 0.225
1-Member WSVE Set 0.4081 27.52 25.91 1.35 0.221
(%Error) (0.84) (15.76) (16.19) (0.74) (2.13)
3-Member WSVE Set 0.4110 24.91 23.35 1.37 0.222
(%Error) (0.13) (4.76) (4.70) 

5-Member WSVE Set 0.4108 24.23 22.75 

(%Error) (0.18) (1.93) (2.04) 

Fig. 11. Plots of % error with respect to the ensemble average for: (a) ISA, CISA, and
ε,  showing good convergence to 0% error as WSVE Set size increases; and (b) K and
�,  which do not show convergence towards 0% error. (c) Schematics showing the
explanation of the behavior of K and �: For Case #1, the path from A to side B is
short (low �). Adding the circled material pixel in Case #2 drastically increases the
path  length (i.e., increases �), but has minimal effect on the 2-point statistics. Adding
t
t
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domain for property or physical phenomena analysis. For instance,
his pixel will also lower K significantly. Note, K and � are still within 5% error for
he WSVE Sets.

ISA ensemble averages are compared, indicating the existence of a
igh pore connectivity in the MPL  microstructure. Porosity (which

s by definition a 1-point statistic) is also well captured by the WSVE
ets. A small increase in % error for the 5-member WSVE Set poros-
ty value is shown in Fig. 11a, but this is likely due to the fact that
ll 2-point statistics (not just the 1-point statistic) are considered
hen selecting a WSVE Set. Even so, the WSVE Set porosities are

till in very good agreement with the ensemble average, exhibiting
egligible % error (less than 1%).

Although quite acceptable, the % errors for tortuosity (�) and

tructural diffusivity coefficient (K) do not decrease steadily as the
umber of members in the WSVE Set increases (Fig. 11b). This
ehavior is attributed to the fact that � and K are more complex
(1.88) (1.66)
1.36 0.218
(1.13) (3.28)

structure parameters which are most likely related to higher-order
statistics (beyond the 2-point statistics). An explanation for this
behavior is depicted in Fig. 11c  by demonstrating two  simple cases.
For Case #1, the path from side A to side B in the microstructure
is very short, resulting in a low tortuosity (�). Adding the single
material pixel (highlighted in red) to the structure in Case #2 will
eliminate the original path/pore region taken, drastically increasing
the shortest path length from A to B (i.e., increasing �) and lower-
ing the K value significantly. However, the addition of this pixel will
have minimal effect on the ensemble-averaged 2-point statistics. It
should be noted that good agreement for � and K is still found with
respect to the ensemble averages, achieving consistent results well
within 5% error for all three WSVE Set sizes (Fig. 11b). These results
indicate that the WSVE Set approach is indeed effective in captur-
ing key transport related properties of a microstructure in a small
volume to within acceptable tolerance.

To further validate the WSVE Set approach, an investigation was
performed in which the 5-member WSVE Set metrics were com-
pared with averages obtained by selecting five random volumes.
These random 5-member volume combinations (“sets”) were
selected from the same 300 random windows used for the WSVE Set
selection (Section 3.2). The five random members in each set were
weighted equally when computing the metrics, and a total of 5000
of these random volume sets were considered. Histograms com-
posed of computed metrics for the 5000 random 5-member volume
sets are shown in Fig. 12.  For each metric histogram, a normal distri-
bution fit is applied (shown in red), and the ensemble average of the
full dataset and 5-member WSVE Set average are plotted as vertical
lines. The ensemble average closely aligns with the peak (mean) of
the normal distribution fit, indicating that 5000 random volumes
are sufficient for the comparison. When the metrics are compared,
the results show that the majority of the 5000 random sets yield
metric values which are less accurate than the 5-member WSVE
Set. More specifically, the percentage of the 5000 random sets that
capture a particular metric of the full dataset less accurately than
the optimally selected 5-member WSVE Set is 97%, 67%, 61% and
74% for porosity, connected internal surface area, tortuosity and the
structural diffusivity coefficient, respectively. This analysis further
validates the WSVE Set approach and also emphasizes the impor-
tance of the selection of proper representative volume(s) for use in
computational models to achieve high accuracy.

3.4. Implementation strategies for different problems

In this work, a case study was  performed to demonstrate the
ability of the WSVE Set approach to select small representative
volumes that accurately represent the prominent morphological
features and key transport properties of the full microstructure
dataset. Depending on the particular problem under investiga-
tion, the size and shape of the RVE or WSVE Sets selected from
the full dataset can be tailored to provide an appropriate model
if effective structural or transport properties are desired, it may  be
sufficient to select a WSVE Set composed of only a few small mem-
bers (volumes) of cubic shape for property analysis. The property of
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ig. 12. Histogram plots composed of metric averages for the 5000 random 5-mem
d)  structural diffusivity coefficient, with a normal distribution fit in red and the en
For  interpretation of the references to color in this figure legend, the reader is refe

nterest can be computed for these small members of the WSVE Set
sing a model or microstructure analysis algorithm. The optimally
ssigned weight of each member in the WSVE Set is then applied
o the respective property value, allowing for the determination of
he desired property of the material in a computationally efficient

anner.
On the other hand, if directionally specific information

s desired, such as a temperature, reactant, or liquid water
istribution, the dimensions of the WSVE members can be easily
ontrolled during the WSVE Set selection process such that a model
omain of proper size is attained. By making the WSVE members

onger in the direction of interest, more detail can be captured
n that direction to ensure that the desired spatial distribution is
ufficiently determined. For example, if one wishes to determine
he through-plane water distribution in a DM or catalyst layer,

 small WSVE Set could be selected such that the length of each
ember is equivalent to the thickness of the DM or catalyst layer

ample. In this case, the assigned weights of the WSVEs would
e applied to their respective distribution to obtain the average
hrough-plane water distribution of the DM or catalyst layer.
his approach would be much more effective than performing
imulations on the entire dataset which is very computationally
rohibitive, or randomly selected regions which may  misrepresent
he overall structure of the material.

Furthermore, the WSVE Set approach may  also be applied to
atasets containing more than two phases. For example, consider

he catalyst layer of PEFCs, which typically contains four phases:
i) platinum catalyst, (ii) carbon support, (iii) ionomer, and (iv)
oid (pore) space. In this case, more than one independent 2-point
orrelation exists. Therefore, more 2-point correlations (both
lume combinations, for (a) porosity, (b) connected surface area, (c) tortuosity, and
le average and 5-member WSVE Set average plotted as vertical lines on each plot.

 the web  version of the article.)

auto- and cross-correlations) would be considered during WSVE
Set selection to sufficiently capture the material structure and
phase distribution.

4. Conclusions

In this work, we have presented a new approach for the selection
of small RVEs, in the form of WSVE Sets, which accurately cap-
ture the prominent features of a much larger material dataset. The
approach was applied to a 3-D FIB-SEM dataset for an MPL  sample
used in PEFCs. Computationally efficient protocols were applied to
the MPL  dataset to compute the key structure and transport proper-
ties that are otherwise very difficult to determine by experimental
means.

Small WSVE Sets composed of one, three, and five members
(each ∼1 �m × 1 �m × 1 �m in size) were selected from the full
MPL  dataset by matching the overall 2-point statistics of the full
dataset. Key structure metrics were evaluated for each WSVE Set
and compared with the respective values for the full MPL dataset.
The comparison shows very good agreement, indicating that the
WSVE Sets can indeed capture structure and transport related prop-
erties of the full dataset with high accuracy (less than 5% error). A
comparison of the metrics captured for the WSVE Sets against those
captured for randomly selected volumes indicates that selection of
a random volume from the full dataset will very likely yield a less
accurate representation of the overall structure.
In conclusion, the results indicate that WSVE Set approach is
an appropriate tool for selecting small, computationally efficient
volumes that accurately reflect the salient structural features and
transport properties of the much larger, full material dataset. RVEs
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dentified by this approach can be confidently used in pore-scale
uel cell modeling studies to maximize the computational effi-
iency and improve the accuracy of model predictions regarding
he structure–performance relationship.
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